3.463 \(\int \frac{\sqrt{\sin (e+f x)}}{\sqrt{b \sec (e+f x)}} \, dx\)

Optimal. Leaf size=51 \[ \frac{\sqrt{\sin (e+f x)} E\left (\left .e+f x-\frac{\pi }{4}\right |2\right )}{f \sqrt{\sin (2 e+2 f x)} \sqrt{b \sec (e+f x)}} \]

[Out]

(EllipticE[e - Pi/4 + f*x, 2]*Sqrt[Sin[e + f*x]])/(f*Sqrt[b*Sec[e + f*x]]*Sqrt[Sin[2*e + 2*f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0807287, antiderivative size = 51, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {2585, 2572, 2639} \[ \frac{\sqrt{\sin (e+f x)} E\left (\left .e+f x-\frac{\pi }{4}\right |2\right )}{f \sqrt{\sin (2 e+2 f x)} \sqrt{b \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Sin[e + f*x]]/Sqrt[b*Sec[e + f*x]],x]

[Out]

(EllipticE[e - Pi/4 + f*x, 2]*Sqrt[Sin[e + f*x]])/(f*Sqrt[b*Sec[e + f*x]]*Sqrt[Sin[2*e + 2*f*x]])

Rule 2585

Int[((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[(b*Cos[e + f*
x])^n*(b*Sec[e + f*x])^n, Int[(a*Sin[e + f*x])^m/(b*Cos[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, m, n}, x] &&
 IntegerQ[m - 1/2] && IntegerQ[n - 1/2]

Rule 2572

Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(Sqrt[a*Sin[e +
 f*x]]*Sqrt[b*Cos[e + f*x]])/Sqrt[Sin[2*e + 2*f*x]], Int[Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b, e, f},
 x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{\sqrt{\sin (e+f x)}}{\sqrt{b \sec (e+f x)}} \, dx &=\frac{\int \sqrt{b \cos (e+f x)} \sqrt{\sin (e+f x)} \, dx}{\sqrt{b \cos (e+f x)} \sqrt{b \sec (e+f x)}}\\ &=\frac{\sqrt{\sin (e+f x)} \int \sqrt{\sin (2 e+2 f x)} \, dx}{\sqrt{b \sec (e+f x)} \sqrt{\sin (2 e+2 f x)}}\\ &=\frac{E\left (\left .e-\frac{\pi }{4}+f x\right |2\right ) \sqrt{\sin (e+f x)}}{f \sqrt{b \sec (e+f x)} \sqrt{\sin (2 e+2 f x)}}\\ \end{align*}

Mathematica [C]  time = 1.08359, size = 60, normalized size = 1.18 \[ -\frac{b \sqrt [4]{-\tan ^2(e+f x)} \, _2F_1\left (-\frac{1}{2},\frac{1}{4};\frac{1}{2};\sec ^2(e+f x)\right )}{f \sqrt{\sin (e+f x)} (b \sec (e+f x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Sin[e + f*x]]/Sqrt[b*Sec[e + f*x]],x]

[Out]

-((b*Hypergeometric2F1[-1/2, 1/4, 1/2, Sec[e + f*x]^2]*(-Tan[e + f*x]^2)^(1/4))/(f*(b*Sec[e + f*x])^(3/2)*Sqrt
[Sin[e + f*x]]))

________________________________________________________________________________________

Maple [B]  time = 0.118, size = 497, normalized size = 9.8 \begin{align*} -{\frac{\sqrt{2}}{2\,f\cos \left ( fx+e \right ) } \left ( 2\,\cos \left ( fx+e \right ) \sqrt{{\frac{1-\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}}\sqrt{{\frac{-1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}}\sqrt{{\frac{-1+\cos \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}}{\it EllipticE} \left ( \sqrt{{\frac{1-\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}},1/2\,\sqrt{2} \right ) -\cos \left ( fx+e \right ) \sqrt{{\frac{1-\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}}\sqrt{{\frac{-1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}}\sqrt{{\frac{-1+\cos \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}}{\it EllipticF} \left ( \sqrt{{\frac{1-\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}},{\frac{\sqrt{2}}{2}} \right ) +2\,\sqrt{{\frac{1-\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}}\sqrt{{\frac{-1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}}\sqrt{{\frac{-1+\cos \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}}{\it EllipticE} \left ( \sqrt{{\frac{1-\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}},1/2\,\sqrt{2} \right ) -\sqrt{{\frac{1-\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}}\sqrt{{\frac{-1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}}\sqrt{{\frac{-1+\cos \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}}{\it EllipticF} \left ( \sqrt{{\frac{1-\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }}},{\frac{\sqrt{2}}{2}} \right ) +\sqrt{2} \left ( \cos \left ( fx+e \right ) \right ) ^{2}-\sqrt{2}\cos \left ( fx+e \right ) \right ){\frac{1}{\sqrt{\sin \left ( fx+e \right ) }}}{\frac{1}{\sqrt{{\frac{b}{\cos \left ( fx+e \right ) }}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(f*x+e)^(1/2)/(b*sec(f*x+e))^(1/2),x)

[Out]

-1/2/f*2^(1/2)*(2*cos(f*x+e)*((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))^(1/2)*((-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+
e))^(1/2)*((-1+cos(f*x+e))/sin(f*x+e))^(1/2)*EllipticE(((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2
))-cos(f*x+e)*((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))^(1/2)*((-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))^(1/2)*((-1+
cos(f*x+e))/sin(f*x+e))^(1/2)*EllipticF(((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))+2*((1-cos(f*
x+e)+sin(f*x+e))/sin(f*x+e))^(1/2)*((-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))^(1/2)*((-1+cos(f*x+e))/sin(f*x+e))^
(1/2)*EllipticE(((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))-((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e
))^(1/2)*((-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))^(1/2)*((-1+cos(f*x+e))/sin(f*x+e))^(1/2)*EllipticF(((1-cos(f*
x+e)+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))+2^(1/2)*cos(f*x+e)^2-2^(1/2)*cos(f*x+e))/cos(f*x+e)/sin(f*x+e)
^(1/2)/(b/cos(f*x+e))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\sin \left (f x + e\right )}}{\sqrt{b \sec \left (f x + e\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^(1/2)/(b*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(sin(f*x + e))/sqrt(b*sec(f*x + e)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b \sec \left (f x + e\right )} \sqrt{\sin \left (f x + e\right )}}{b \sec \left (f x + e\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^(1/2)/(b*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(f*x + e))*sqrt(sin(f*x + e))/(b*sec(f*x + e)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\sin{\left (e + f x \right )}}}{\sqrt{b \sec{\left (e + f x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)**(1/2)/(b*sec(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(sin(e + f*x))/sqrt(b*sec(e + f*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\sin \left (f x + e\right )}}{\sqrt{b \sec \left (f x + e\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^(1/2)/(b*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(sin(f*x + e))/sqrt(b*sec(f*x + e)), x)